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Abstract

In this “nano idea” paper, three concepts for the preparation of methylammonium lead halide perovskite particles
are proposed, discussed, and tested. The first idea is based on the wet chemistry preparation of the perovskite
particles, through the addition of the perovskite precursor solution to an anti-solvent to facilitate the precipitation
of the perovskite particles in the solution. The second idea is based on the milling of a blend of the perovskite
precursors in the dry form, in order to allow for the conversion of the precursors to the perovskite particles. The
third idea is based on the atomization of the perovskite solution by a spray nozzle, introducing the spray droplets
into a hot wall reactor, so as to prepare perovskite particles, using the droplet-to-particle spray approach (spray
pyrolysis). Preliminary results show that the spray technology is the most successful method for the preparation of
impurity-free perovskite particles and perovskite paste to deposit perovskite thin films. As a proof of concept, a
perovskite solar cell with the paste prepared by the sprayed perovskite powder was successfully fabricated.
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Background
Various forms of the organometal halide perovskites util-
izing various cations, such as methylammonium (MA),
formamidinium (FA), cesium (Cs), or a combination of
thereof, are very attractive photovoltaic materials and
are currently widely explored to develop conventional
thin-film perovskite solar cells, e.g., [1–4], as well as
flexible and low weight to power [5] and tandem
perovskite-based solar cells [6]. MA and FA cations are
organic, less stable, and cheaper than Cs, which is a rare
metal. While the majority of the research activities on
the perovskites focus on thin-film solar cells, such
molecular semiconductors could play a role in other
similar fields, such as field effect transistors [7], perovsk-
ite light-emitting diodes [8], and high-energy radioactive
radiation sensors [9].
In most perovskite-based devices, the perovskites are

directly deposited in the form of thin films. However,
several recent works have reported the fabrication of the

perovskite semiconductors in the nanocrystal or particu-
late form. Perovskite nanocrystals exhibit high photolu-
minescence quantum yields and quantum confinement
effects, analogous to the conventional quantum dots,
when their dimensions are reduced to sizes comparable
to their respective exciton Bohr radii, bringing about
new opportunities for the development of new devices
[10–12]. Most of such studies are centered around all-
inorganic Cs-based perovskites, owing to their higher
stability, e.g., [13–30], followed by organic-inorganic
MA-based perovskites, e.g., [31–41], and very few on the
FA-based perovskites, e.g., [42]. Most of the abovemen-
tioned works have focused on the properties of the
perovskite nanocrystals. Some works have fabricated
perovskite devices such as perovskite light-emitting
diodes that incorporate the nanocrystals in the form of
thin films, e.g., [21, 27, 29]. Few works have proposed
formulations to prepare perovskite inks such as inks
containing lead halide nanocrystals mixed with MA pre-
cursors [41] for the deposition of the thin films for solar
cell applications.
The perovskite nanocrystals with rather small sizes and

controlled morphology, as reported by the abovementioned
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works, are commonly grown in the solution (wet chemis-
try) [11]. Schmidt et al. [31] prepared colloidal MAPbBr3
nanocrystals with the size of 6 nm by mixing the perovskite
precursors with organic solvents. They also prepared
homogeneous thin films of these nanoparticles by spin-
coating. Hassan et al. [36] used a two-step solution method
to prepare mixed MA-based perovskite nanodots, where
first the lead halide seed particles form in the solution and
then the MA solution is added in order to complete the
process. All-inorganic Cs-based perovskite nanoparticles
have been prepared using similar wet chemistry methods,
such as injection of Cs precursors into the lead halide
precursor solution containing hot, high boiling point
solvents [30]. Most of the aforementioned works focus on
the fabrication of perovskite nanocrystals, which show a
quantum confinement effect. However, for most thin-film
devices such as solar cells, the quantum confinement effect
is immaterial, and the preparation of polycrystalline micro-
and nano-perovskite particles and thin films with facile
techniques is desirable.

Presentation of the Hypothesis
In this work, we report the idea and successful prepar-
ation of MAPbI3 perovskite particles by low-cost and fa-
cile spray technology, for the first time. In this proposed
method, following the well-known process of droplet-to-
particle formation of pharmaceuticals and ceramics by
spray drying and spray pyrolysis, e.g., [43–46], a spray
nozzle atomizes the perovskite solution, where the drop-
lets in the form of a mist are introduced into a single- or
multi-stage hot wall (tubular) reactor. As the droplets
travel along the reactor, the solvent evaporates, a chem-
ical conversion occurs to convert the precursor droplets
into the perovskite particles. Therefore, as a result of the
presence of a chemical reaction, the process may be
called spray pyrolysis. The produced perovskite particles
are collected at the outlet of the reactor. The method is
capable of producing small particles in the nanometer

range, i.e., nanocrystals, if the solution is atomized using
specialty atomization techniques, such as electrospray
nozzles or low-concentration solutions [46]. In addition,
the fragile as-prepared perovskite particles may break
down to form nano-sized perovskite particles, to be elab-
orated on later in this paper.
In addition to the spray route, two other methods are

proposed and tested for the preparation of the perovsk-
ite particles, i.e., the wet chemistry and milling. In the
wet chemistry method, the perovskite precursor solution
is added dropwise to an anti-solvent of the perovskite
solvents, such as toluene, under stirring condition. The
method leads to the precipitation of the perovskite parti-
cles in the anti-solvent. In the milling method, the
perovskite precursors such as dry MAI and PbI2
powders are blended and milled, for instance in a hot
plate magnetic stirrer, for several hours to react with one
another, due to the mechanical forces. Figure 1 shows
the schematic of the three proposed methods used in
this work to prepare the perovskite particles.

Testing the Hypotheses
In order to test the credibility of the proposed ideas, we
have conducted preliminary experiments by preparing
perovskite powders, as well as thin films and solar cells
with the produced powders. Perovskite precursors were
purchased from Xi’an Reagents Co., China, and other
chemical were purchased from Sigma-Aldrich. The
perovskite liquid solution used in the anti-solvent and
spray methods were prepared by dissolving 158 mg of
MAI and 420 mg of PbI2 powders in 1 ml of dimethyl
sulfoxide (DMSO).

(i) Anti-solvent method
In the anti-solvent method, the perovskite solution was
added to toluene dropwise under stirring condition.
After 2 min, yellow perovskite powder precipitated at
the bottom and sidewalls of the beaker, and after

Fig. 1 Three methods of producing perovskite powders used in this work: a wet chemistry anti-solvent method, b dry milling method (on a magnetic
stirrer), and c droplet-to particle spray pyrolysis
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20 min of stirring, colloidal perovskite powder was
observed in toluene, as well. This product (after
20 min) was annealed in an oven at 150 °C for 60 min.
Figure 2a shows the X-ray diffraction (XRD; model
D5005, Bruker, Germany) of the perovskite powder
prepared by an anti-solvent method, where it is evident
that the precursors have converted to the perovskite,
although some weak peaks, associated with impurities
are present.

(ii) Milling method
Testing the idea of blending and milling of the dry
perovskite precursors for the preparation of the
perovskite powder requires a well-designed milling
machine to provide sufficient forces. Here, in order

to test the idea, a simple hot plate magnetic stirrer
was used. The MAI and PbI2 powders were mixed
with the mass ratios of PbI2/MAI of 1 and 2. The
hot plate was kept at 200 °C, and the dry powders
were blended and crushed in the container due to the
force of the magnetic stirring bar. In wet chemistry
preparation of perovskite precursor solution, the mass
ratio of PbI2/MAI is around 3 (as mentioned above
for the preparation of the perovskite solution),
whereas in the milling method, we found that lower
mass ratios (less PbI2 than stoichiometric) is more
effective, in that the reaction of the precursor powders
and conversion to the perovskite is improved.
Figure 2b shows the XRD patterns of the produced

Fig. 2 XRD pattern of perovskite powder prepared by a anti-solvent method, b milling method at two PbI2/MAI mass ratios, and c spray method
when the temperature of the second heater (second stage of heating) is kept at two different temperatures of 175 and 275 °C, while the first
heater (first stage of heating) is kept at 275 °C in both cases. The asterisk denotes the perovskite peaks
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perovskite powder for the PbI2/MAI mass ratios of 1.0
and 2.0. In general, the mass ratio of 1.0 is more
successful in producing the perovskite powders;
however, traces of impurities are present. This may be
due to the insufficient interacting forces between the
two precursors that results in traces of the initial pre-
cursors mixed up with the perovskite powder. There-
fore, the milling approach was not successful in
producing pure perovskite structure. Using a well-
designed milling machine and careful control of the
process parameters, such as the milling time and
temperature, and addition of small amount of proper
solvents to facilitate the process may improve the
purity and the crystalline structure of the powders.

(iii) Spray method
In the spray method, the perovskite solution was
atomized with an air-assisted spray nozzle with a
nozzle diameter of 0.2 mm, where the air pressure
was set to 2.0 psig. The spray droplets were introduced
into two vertically stacked stainless steel tubular heaters
with a diameter of 10 cm, a length of 30 cm, with the
maximum power of 800 W, each (Yancheng Huabang
Electric Equipment Co., Ltd). The first heater was kept
at 275 °C, so as to quickly evaporate the solvent, and
the second or bottom heater was kept at either 275 °C
or a lower temperature of 175 °C, where the latter was
used to avoid the decomposition of the perovskite pow-
ders that had already formed. As Fig. 2c shows, the
powder produced when the temperature of both
heaters is kept at 275 °C contains high intensity peaks
of PbI2, whereas when the temperature of the second
heater is reduced to 175 °C, the impurities are nearly
disappeared and the crystallinity of the perovskite is
increased. In summary, the XRD results of the powders
produced using the three abovementioned methods
(Fig. 2) substantiate the merit of the spray method for
producing pure and crystalline perovskite powders.

Figure 3 shows the scanning electron microscope (SEM;
Hitachi, Model S-3400N) images of the produced powders
by the three aforementioned methods. It is observed that
the collected powders are somewhat agglomerated, which
may have happened during the preparation or analysis.
Nevertheless, the images of the powders prepared by the

milling and spraying show the shape and size of the indi-
vidual particles. The particles are few microns in size and
have non-spherical and irregular shapes. In the spray
method, one may expect to see spherical particles, as each
perovskite droplet usually dries to form a perovskite
particle. The non-spherical shape may be due to the
strong ionic forces within the droplets of perovskite and/
or preferential growth of perovskite structure along a
particular axis [47], which might have caused distortion of
the drying particles. In other words, while the surface ten-
sion on the droplet surface tends to retain the spherical
shape, the developed ionic forces in the particle during the
precipitation could outweigh the surface tension force.
This phenomenon is encountered in drying of other ionic
solution droplets, such as NaCl, e.g., [48]. In addition,
partial break down of the as-prepared perovskite particles
may be responsible for the small sizes and irregular shapes
of the perovskite particles.
To further study the particle size, we dispersed the

aforementioned powders in toluene and measured the
particle size by a zeta particle sizer (Malvern, nano-
zs90). Figure 4 shows the particle size distribution of the
powders produced by the three aforementioned
methods. Dispersion of the powders in toluene results in

Fig. 3 SEM images of the powders produced by a anti-solvent, b milling, and c spray methods

Fig. 4 Particle size distribution of perovskite particles prepared using
three different methods
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disintegration and breakdown of the particles, such that
the individual particles have a size near or below 1 μm.
This indicates that the produced particles have a weak
and fragile structure and easily break down to smaller
nano-sized particles. Such phenomenon has been ob-
served by others in other particle systems, [49, 50] as
well. The results also show a narrow size distribution for
the particles prepared by the spray method. Based on
the SEM and particle size measurements, the spray
method for the preparation of the perovskite particles
has been schematically shown in Fig. 5. The milling
process also produces small particles, but with a wider
size distribution. The powder made by the anti-solvent
method has the largest particle size. Thus, the spray
method produces small and mono-dispersed particles
compared to the other two methods, making it a suitable
method for the preparation of a perovskite paste for the
deposition of thin films. The XRD patterns had already
shown that the most pure and crystalline perovskite
powder is obtained by the spray method as well.

Implication of the Hypothesis
We further examined the possibility of using the
produced powders to prepare perovskite films. Fluorine-
doped indium tin oxide (FTO)-coated glass substrates,
washed with detergent, water, and isopropanol and
treated with the UV radiation, was used as the starting
substrate. Then, layers of compact TiO2 (c-TiO2) and m-
TiO2 were deposited atop the FTO-coated glass, sequen-
tially. For the c-TiO2 layer, 2.54 ml of titanium isoprop-
oxide was diluted in 16.9 ml of ethanol, and 350 μl of
HCl (2 M) was diluted in 16.9 ml of ethanol. The HCl
solution was added to the titanium isopropoxide solu-
tion dropwise, under stirring condition, and the resulting
solution was spun onto the FTO-coated glass at
2000 rpm for 60 s and annealed at 500 °C for 30 min. In
order to fabricate the m-TiO2 layer, titanium dioxide
paste diluted by ethanol (2:7 mass ratio) was spun on
the c-TiO2 layer at 5000 rpm for 30 s and annealed at
500 °C for 30 min. Then, the perovskite paste was pre-
pared by adding 10 μl of ethanol to 20 mg of the

Fig. 5 Schematic of the proposed method for the preparation of micrometer-sized and nanometer-sized perovskite particles in a suggested two-stage
heater. The first stage is for rapid solvent evaporation (~ 275 °C), whereas the second stage (~ 175 °C) is for complete drying and in situ annealing

Fig. 6 SEM images of blade-coated films from the paste of powders prepared by a anti-solvent, b milling, and c spray methods
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produced powders. The paste was deposited on the
m-TiO2 layer at room temperature at a speed of 3 mm/s
with a blade coater. The SEM images of the perovskite
films are shown in Fig. 6, where it is observed that only
the film deposited by the paste prepared by the spray-
generated powder is uniform and fully-covered. This is
partly due to the small particle size and a narrow size
distribution associated with the aforementioned parti-
cles, as shown in Fig. 4. The UV-Vis absorbance
(Lambda 20, Perkin Elmer Inc., USA) of the aforemen-
tioned perovskite thin films are shown in Fig. 7, where it
is substantiated that the perovskite film prepared with
the spray-generated perovskite powder shows a standard
absorbance profile, with a sudden drop in the absorb-
ance around the wavelength of 750 nm, which is the
characteristic of the perovskites [51].
In order to further test the proposed idea, a basic

perovskite solar cell was fabricated, incorporating the
MAPbI3 perovskite film prepared with the spray-made
particles. To this end, spiro-OMeTAD was deposited
atop the perovskite film, based on the procedure ex-
plained elsewhere [51], and then 100 nm of Au was ther-
mally evaporated to complete the device. The JV curve
and the photovoltaic parameters of the fabricated device
are shown in Fig. 8. The power conversion efficiency
(2.05%) is low due to low open circuit voltage (Voc),
short circuit current density (Jsc), and fill factor (FF).
This may be mainly attributed to the insufficient binding
between the perovskite particles in the film, which has
presumably resulted in excessive charge recombination,
due to an inadequate charge transfer from the perovskite
to the adjacent layers (TiO2 and spiro-OMeTAD).
Nevertheless, the successful fabrication of a perovskite
solar cell shows the merit of the proposed method, i.e.,

the fabrication of the perovskite particles by spray coat-
ing. In this work, ethanol was used to prepare the paste
and bind the particles. Using more suitable additives that
do not dissolve the perovskites and at the same time
play the role of an effective glue would improve the
quality of the films and the device performance.

Conclusions
In this work, we introduced three ideas for the prepar-
ation of perovskite particles and perovskite pastes to
produce thin films. It was demonstrated that the powder
prepared by spraying of the perovskite solution is crys-
talline and impurity-free, and has a small particle size
and size distribution. Perovskite pastes and thin films
were prepared using the aforementioned perovskite
powders, where the perovskite film prepared using the
spraying technique showed a standard morphology and
light absorbance. A mesoporous perovskite solar cell was
fabricated using the perovskite film prepared by the
sprayed particles, where an efficiency of 2.05% was
measured.
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